Novel glycogen synthase kinase 3 and ubiquitination pathways in progressive myoclonus epilepsy.
نویسندگان
چکیده
Lafora progressive myoclonus epilepsy, caused by defective laforin or malin, insidiously present in normal teenagers with cognitive decline, followed by rapidly intractable epilepsy, dementia and death. Pathology reveals neurodegeneration with neurofibrillary tangle formation and Lafora bodies (LBs). LBs are deposits of starch-like polyglucosans, insufficiently branched and hence insoluble glycogen molecules resulting from glycogen synthase (GS) overactivity relative to glycogen branching enzyme activity. We previously made the unexpected observation that laforin, in the absence of which polyglucosans accumulate, specifically binds polyglucosans. This suggested that laforin's role is to detect polyglucosan appearances during glycogen synthesis and to initiate mechanisms to downregulate GS. Glycogen synthase kinase 3 (GSK3) is the principal inhibitor of GS. Dephosphorylation of GSK3 at Ser 9 activates GSK3 to inhibit GS through phosphorylation at multiple sites. Glucose-6-phosphate is a potent allosteric activator of GS. Glucose-6-phosphate levels are high when the amount of glucose increases and its activation of GS overrides any phospho-inhibition. Here, we show that laforin is a GSK3 Ser 9 phosphatase, and therefore capable of inactivating GS through GSK3. We also show that laforin interacts with malin and that malin is an E3 ubiquitin ligase that binds GS. We propose that laforin, in response to appearance of polyglucosans, directs two negative feedback pathways: polyglucosan-laforin-GSK3-GS to inhibit GS activity and polyglucosan-laforin-malin-GS to remove GS through proteasomal degradation.
منابع مشابه
Starch-like polyglucosan formation in neuronal dendrites in the Lafora form of human epilepsy: a theory of pathogenesis
Lafora disease is a teenage-onset fatal form of progressive myoclonus epilepsy. In this disease, starch-like polyglucosans are formed in neurons, specifically in the neuronal soma and dendrites. Laforin, the protein product of the disease gene, possesses a CBM20 type of starch-binding domain with which it preferentially binds starch over glycogen. It also contains a dual-specificity phosphatase...
متن کاملDeciphering the role of malin in the lafora progressive myoclonus epilepsy.
Lafora disease (LD) is a fatal, autosomal recessive neurodegenerative disorder that results in progressive myoclonus epilepsy. A hallmark of LD is the accumulation of insoluble, aberrant glycogen-like structures called Lafora bodies. LD is caused by mutations in the gene encoding the E3 ubiquitin ligase malin or the glucan phosphatase laforin. Although LD was first described in 1911, its sympto...
متن کاملRegulation of glycogen synthesis by the laforin-malin complex is modulated by the AMP-activated protein kinase pathway.
Lafora progressive myoclonus epilepsy (LD) is a fatal autosomal recessive neurodegenerative disorder characterized by the presence of glycogen-like intracellular inclusions called Lafora bodies. LD is caused by mutations in two genes, EPM2A and EPM2B, encoding respectively laforin, a dual-specificity protein phosphatase, and malin, an E3 ubiquitin ligase. Previously, we and others have suggeste...
متن کاملIncreased Endoplasmic Reticulum Stress and Decreased Proteasomal Function in Lafora Disease Models Lacking the Phosphatase Laforin
BACKGROUND Lafora progressive myoclonus epilepsy (Lafora disease; LD) is a fatal autosomal recessive neurodegenerative disorder caused by loss-of-function mutations in either the EPM2A gene, encoding the dual specificity phosphatase laforin, or the EPM2B gene, encoding the E3-ubiquitin ligase malin. Previously, we and others have shown that both proteins form a functional complex that regulates...
متن کاملPTG Depletion Removes Lafora Bodies and Rescues the Fatal Epilepsy of Lafora Disease
Lafora disease is the most common teenage-onset neurodegenerative disease, the main teenage-onset form of progressive myoclonus epilepsy (PME), and one of the severest epilepsies. Pathologically, a starch-like compound, polyglucosan, accumulates in neuronal cell bodies and overtakes neuronal small processes, mainly dendrites. Polyglucosan formation is catalyzed by glycogen synthase, which is ac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Human molecular genetics
دوره 14 18 شماره
صفحات -
تاریخ انتشار 2005